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Abstract

We performed long time simulations using the |D
1
> approximation for the solution of the Davydov Hamiltonian.

In addition we computed expectation values of the relevant operators with the state ( )$H J DD 1 and the devia-

tion |δ> from the exact solution over long times, namely 10 ns. We found that in the very long time scale the |D
1
>

ansatz is very close to an exact solution, showing expectation values of the relevant physical observables in the

state ( )$H J DD 1 being about 5-6 orders of magnitudes larger than in the deviation state |δ>. In the intermedi-

ate time scale of the ps range such errors, as known from our previous work, are somewhat larger, but still more
or less negligibly. Thus we also report results from an investigation of the very short time (in the range 0-0.4 ps)
behaviour of the |D1> state compared with that of an expansion of the exact solution in powers of time t. This
expansion is reliable for about 0.12 ps for special cases as shown in the previous paper. However, the accuracy
of the exactly known value of the norm and the expectation value of the Hamiltonian finally indicates up to what
time a given expansion is valid, as also shown in the preceding paper. The comparison of the expectation values
of the operators representing the relevant physical observables, formed with the third order wave function and
with the corresponding results of |D1> simulations has shown, that our expansion is valid up to a time of roughly
0.10-0.15 ps. Within this time the second and third order corrections turned out to be not very important. This is
due to the fact that our first order state contains already some terms of the expansion, summed up to inifinite
order. Further we found good agreement of the results obtained with our expansion and those from the corre-
sponding |D1> simulations within the time of about 0.10 ps. At later times, the factors with explicit powers of t
in second and third order become dominant, making the expansion meaningless. Possibilities for the use of such
expansions for larger times are described. Alltogether we have shown (together with previous work on medium
times), that the |D1> state, although of approximative nature, is very close to an exact solution of the Davydov
model on time scales from some femtoseconds up to nanoseconds. Especially the very small time region is of
importance, because in this time a possible soliton formation from the initial excitation would start.
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Introduction

In the Introduction to the preceding paper [1], we discussed
already the basic concepts of the Davydov soliton mecha-
nism for energy transport in proteins [2-5]. Therefeore we
refer the reader to that paper and references therein, and es-
pecially to the most recent and best review of the state of art
in Davydov soliton theory given by Scott [6]. In our preced-
ing paper [1] we studied special cases of the Davydov
Hamiltonian. In these cases it turned out that the |D

1
> ansatz

state of Davydov [3] represents the exact solution, if the ini-
tial state is restricted to |D

2
> [2] like states with site inde-

pendent coherent states amplitudes. Further we found that
expansions of the exact wave functions in polynomial serieses
in time and truncation of these polynomials after the third
order yield reliable results for times up to 0.10-0.12 ps for
the lattice in the small polaron limit, and 0.6-0.8 ps for the
amide-I oscillators in the decoupled case. More important,
we found that the accuracy of the norm and of the expecta-
tion value of the Hamiltonian (total energy) corresponds ex-
actly to that of the expectation values of the exciton number
operators in the decoupled case and that of the displacement
and momentum operators in the small polaron limit. Thus
norm and total energy are a measure of the time scale within
which a given expansion yields reliable results. In the present
work which is based on [1] and makes use also of the explicit
forms of the wave functions discussed there we determine
similar expansions of the exact solution of the full Davydov
Hamiltonian up to the third order and compare them on the
very short time scale with the results of |D

1
> simulations in

order to get quantitative informations on the reliability of
that ansatz which is not an exact solution of the time depend-
ent Schrödinger equation. Further, using concepts developed
in [7] and applied to a medium time scale in the range of a
few picoseconds in [8], we study the behaviour of the errors
introduced by the use of the |D

1
> ansatz on large time scales

of the order of nanoseconds.
This study completes our previous one [8], where we con-

cluded that in the subspace of basis functions spanned by the
|D

1
> ansatz, the errors are negligible within times of a few

picoseconds. From this result we concluded, that on this time
scale the |D

1
> ansatz should be rather close to an exact solu-

tion, because we expect that if the exact solution would con-
tain important contributions from basis states not included in
|D

1
>, this should cause large errors also in the space spanned

by |D
1
>. However, the very small time scale is an important

one, because in that time a possible soliton formation from a
localized initial state starts, especially since the lattice is ini-
tially in equilibrium and only driven by the interaction with
the localized initial excitation in the chain of amide-I oscil-
lators. In case of a possible soliton formation exactly these
initial displacements of the lattice formed in the first few
hundredths of a picosecond stabilizes the amide-I excitation
against dispersion. To investigate this range of time we ex-

pand the exact solution [ ]Φ Φ= −exp $iH tD h 0  for the

Davydov Hamiltonian ($HD ), where |Φ
o
> is the initial state,

in a Taylor series in time and compare the results with those
from a |D

1
> simulation. Attempts into this direction have been

reported previously by Cruzeiro-Hansson, Christiansen and
Scott [9]. However, they restricted their considerations to a
dimer and found that second order terms can be neglected
only for times much smaller than 0.1 ps. Further they give no
comparisons to approximate simulations and for the case of
N sites they give a system of equations, but draw no numeri-
cal conclusions from it.

Davydov’s Hamiltonian and the |D
1
> Approximation

The Hamiltonian, as well as the form of the |D
1
> approxima-

tion have been discussed extensively in the literature and in
the preceding paper [1]. However, for the purpose of clearcut
definitions in the following, we repeat here the form of the
Hamiltonian as it is used extensively in this work. The full
Hamiltonian can be written as

$ $ $ ; $ $ $H H D D E a aD n n k
k

N

n

N

= + ≡ ++

=

−

=
∑∑0

1
2

1

1

1

hω (1)

where E
0
 is the amide-I excitation energy, â

n
 (â

n
+) are annihi-

lation (creation) operators of amide-I vibrational quanta at
site n in the chain and ω

k
 are the eigenfrequencies of the

decoupled lattice. All definitions and details can be found in
[1]. As also shown in [1] the exact state vecor is then

Φ =
− +











=

−

∑
e

it
E k

k

N

h
h0

1

11

2
ω

ψ (2)

where |ψ> obeys the time dependent Schrödinger equation

i H
t

h
∂
∂ ψ ψ= $ (3)

with the simplified Hamiltonian

$ $ $H J= + ω (4)

where

( )$ $ $ $ $J J a a a an n n n
n

N

= − ++
+ +

+
=

∑ 1 1
1

(5)

Here J is the coupling constant between two neighboring
amide-I oscillators. Further
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( )$ $ $ $ $ $ $ω ω= + +
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
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
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[ ]B
M

U U k Nnk
k k

n k nk≡ − ≠+
χ

ω ω
1

2
1

h
, ;

where $bk  ( $bk
+ ) is the annihilation (creation) operator for an

acoustical lattice phonon k, M is the mass of a site and χ the
coupling constant between the amide-I oscillators (excitons)

and the lattice. The matrix U contains the normal mode co-

efficients in the real representation for the decoupled lattice.
Again the details are derived in paper [1]. We use for the
present study cyclic boundary conditions and chains with an
odd number of sites (N), thus n=N+1 equals n=1 and n=0
equals n=N. The |D

1
> ansatz for |ψ> has the form (the re-

striction at the sums over k just excludes the translational
mode)

( )D a t U an n n
n

N

1
1

0= +

=
∑ $ $

(7)

( ) ( )
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Note, that the last equality holds only if the operator acts
on the phonon vacuum |0>

p
, and that in our notation

|0>=|0>
e
|0>

p
, where |0>

e
 is the vacuum state for the amide-I

oscillators (exciton vacuum). The b
nk

(t) are the coherent state
amplitudes and |a

n
(t)|2 is the probability to find an amide-I

quantum at site n. The equations of motion for these quanti-
ties can be obtained with the Euler-Lagrange equations of
the second kind (see again [1] and references therein for all
details):
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where the coherent state overlaps are given by
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Long Time Simulations

In this sub-chapter we want to study the important question
of the long-time behaviour of the errors introduced by the
|D

1
> ansatz. One cannot exclude that these errors, which are

very small for intermediate times of some ps (see [1] and
references therein for details), might increase with time. In
our case, the basis space of |D

1
> is incomplete, since it is not

an exact solution. However, from the magnitude of the errors
introduced within the basis space of |D

1
>, we can estimate

the importance of the basis states missing in the ansatz. If
these missing states would be important in the exact solu-
tion, one would expect, that the errors made by the ansatz
should be rather large already within the subset of the basis
space spanned by |D

1
>. For the numerical investigation of

these errors we can use the fact that [7]

( )i H D J
t Dh

∂
∂ δ− =$

1 (10)

where the form of the error state |δ> as function of {a
n
(t),b

nk
(t)}

as computed in a |D
1
> simulation is known [7]. In our previ-

ous work [8] we have derived expressions for the expecta-
tion values of different operators for the two states

( )$H J DD 1 and |δ> and compared them in numerical cal-

culations. Such a procedure can serve as the appropriate tool
to answer our above mentioned question.

 As initial state state we use the same one as described in
detail in paper [1], section III.3. It consists of a sech-func-
tion for the coefficients in the oscillator part and a lattice,
populated with phonons according to a temperature of 300K.
We performed calculations for different exciton-phonon cou-
pling constants, namely χ = 60 pN, 120 pN, 180 pN, and 240
pN, and chains of length N=21 units. For the fourth order
Runge-Kutta simulations we used in case of χ = 60 pN a
time step of 0.1 fs and a total simulation time of 10 ns, corre-
sponding to 108 time steps. In this period the error in total
energy (0.796 eV) was typically between 0 and -7 peV (the
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exciton-phonon interaction energy was between 0.5 and -4.5
meV) and the error in norm between 0 and -0.006 ppb (parts
per billion). The computation time was 2.48 minutes of CPU
(Central Processing Unit) time for the simulation of 1 ps and
thus 413 hours of CPU time for the complete simulation on
an IBM RISC/6000-320H workstation. In the other three cal-
culations we used a time step of 1 fs for the same total simu-
lation time and in these cases the absolute values of the er-
rors in total energy were less than 3 µeV (χ=120 pN, exciton-
phonon interaction energy E

ep
 between 0.5 and -12 meV),

less than 44 µeV (χ=180 pN, exciton-phonon interaction en-
ergy E

ep
 between -5 and -25 meV) and less than 400 µeV

(χ=240 pN, exciton-phonon interaction energy E
ep
 between -

2 and -45 meV), respectively. The absolute values of the er-
rors in the norms were less than 4 ppm (parts per million,
χ=120 pN), 80 ppm (χ=180 pN) and 750 ppm (χ=240 pN).
From this it is obvious that a time step of 1 fs is sufficient to
obtain correct results for simulation times of 10 ns. Also for
the case of χ=60 ps the larger time step caused no significant
changes in the results.

Figure1 shows the time evolution of the probability to
find an amide-I quantum at a site n for the three different
cases. While we observe a complete dispersion of the initial
sech-distribution in case of the two smaller couplings, the
initial excitation remains localized in the range of the initial
distribution up to 10 ns in case of the larger couplings. For
χ=60 pN a considerable fraction of the excitation localizes
itself at more or less a single site close to the center of the
initial excitation after 2-3 ns and remains there until the end
of the simulation. Such spontaneous localizations cannot
occur for the larger coupling, because in these cases the ther-
mal disorder in the lattice is more strongly coupled to the
oscillator system. In Figure 2 we show the norms

( ) ( ) ( )S t H J D H J DH = $ $
1 1 for the four values of the cou-

pling constant. Obviously the norms show a decreasing ten-
dency for increasing coupling, namely from maximum val-
ues of roughly 7000 (χ=60 pN) to 1200 (χ=240 pN). For the
smallest coupling the function shows a fast oscillation around
5000 when time increases, while for the largest coupling a

Figure 1: Long-time evolution of N
n
(t)=<D

1
|â

n
+â

n
|D

1
> for

four values of the exciton-lattice coupling constant.
(a) χ=60 pN (b) χ=120 pN
(c) χ=180 pN (d) χ=240 pN
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Figure 2: The norm ( ) ( ) ( )S t H J D H J DH = $ $
1 1  as function

of time for four values of the coupling constant (note that
t=80 ps is the first time in the simulation where our program
prints out intermediate results, however, in the plots for our
long time simulations t=0 and t=80 ps are indistinguishable):

(a) χ= 60 pN (S
H
 relative to S

H
(t=80 ps)=684,827.548170)

(b) χ=120 pN (S
H
 relative to S

H
(t=80 ps)=688,883.505744)

(c) χ=180 pN (S
H
 relative to S

H
(t=80 ps)=694,750.770186)

(d) χ=240 pN (S
H
 relative to S

H
(t=80 ps)=710,240.923822)

very slow oscillation around 800 starts after roughly 3 ns.
Fig. 3 shows S

E
(t)=<δ|δ> for the different couplings. In all

cases the error remains about 8 orders of magnitude smaller
than S

H
(t), indicating that within the |D

1
> basis space no sig-

nificant errors of the norm of the state occur. Note, that the
S

H
(t)-plots are drawn relative to S

H
(t=80 ps). Moreover, in all

cases S
E
(t) increases within the first 500 to 1000 ps to values

around 2.3 and afterwards decreases to a small amplitude
oscillation around 2.03 and 2.00, independent of the value of
the coupling constant. Even after 10 ns the mean value of
S

E
(t) still seems to decrease further very slowly. Therefore

t(ps)t(ps)

t(ps)t(ps)

S
H
(t) S

H
(t)

S
H
(t) S

H
(t)
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Figure 3: The norm S
E
(t)=< δ|δ> as function of time for four

values of the coupling constant:

(a) χ= 60 pN (b) χ=120 pN
(c) χ=180 pN (d) χ=240 pN

we can conclude, at least on the basis of the norms, that the
error introduced by the incomplete basis space of the ansatz
decreases in time, and that the |D

1
> state becomes more ac-

curate in the long time limit.

Figure 4 shows the time evolution of the number opera-

tors for the oscillators, ( ) ( ) ( )N t H J D a a H J Dn
H

n n= +$ $ $ $
1 1

and Figure 5 those for the error state Nn
E(t)=<δ|ân

+ân|δ>. Also
here the errors show no tendency to increase with increasing
time, in contrast, they have a constant order of magnitude
through all 10 ns. They follow closely the time evolution of
Nn

H(t), however, being 6 to 7 orders of magnitude smaller,
thus as in case of the norms, the deviations are completely
negligibly, also over times as large as 10 ns. The same holds

t(ps) t(ps)

S
E
(t) S

E
(t)

t(ps) t(ps)

S
E
(t)S

E
(t)
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follow the corresponding pictures computed from the state

( )$H J DD 1 , and are about 5 to 6 orders of magnitude

smaller, which does not change in the large time scales of
our simulations.

Therefore we can conclude from our results, that for large
times |D

1
> is close to the exact solution, with nearly negligi-

ble deviations. Further we know from our previous simulations
on intermediate time scales in the range of ps, that in this
region the errors are somewhat larger, although still more or
less negligible [8]. In the next section we study the time
around 0.1 ps, where a possible soliton formation would start
from localized initial states.

Expansion of the Exact Wavefunction

We start, as in our preceding paper [1], from the well-known
ansatz for the exact solution of the Schrödinger equation

( )
ψ ψ

ω
=

− +
e

it
J

h

$ $

0 (11)

Figure 4:

The expectation values ( ) ( ) ( )N t H J D a a H J Dn
H

n n= +$ $ $ $
1 1

as functions of site and time for the different values of the
coupling constant (also here and in Fig. 5-9 the first line
drawn in the plot is that at t=80 ps, also the time distance
between two lines is 80 ps):

(a) χ=60 pN (b) χ=120 pN
(c) χ=180 pN (d) χ=240 pN

for the expectation values of the displacement and momen-

tum operators. ( ) ( ) ( )q t H J D q H J Dn
H

n= $ $ $
1 1  and

( )q t qn
E

n= δ δ$ , respectively, as well as

( ) ( ) ( )p t H J D p H J Dn
H

n= $ $ $
1 1 and ( )p t pn

E
n= δ δ$ , re-

spectively, not shown here, exhibit a quasi-random behav-
iour as it is to be expected because of the „thermal“ excita-
tion in the initial state. However, also here the errors closely
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Figure 5: The expectation values NE
n
(t)=< δ|â

n
+â

n
|δ> as

functions of site and time for the different values of the
coupling constant:

(a) χ=60 pN (b) χ=120 pN
(c) χ=180 pN (d) χ=240 pN

Then the exponential in the exact wave function is ex-
panded in a Taylor series yielding

( ) ( )ψ
ν

ω ψ
ν ν
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From this expansion we can immediately extract two se-
ries

T
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Note here that the two parts of the Hamiltonian do not
commute

[ ] ( )$ , $ $ $ $ $ $ $ $ $ω ω ω ω αJ J J C B b bk nk k k n
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As model system we use a cyclic chain of N (N odd)
units and an initial excitation of an amide-I oscillator at site o.
The lattice is initially in its groundstate. Thus we have

ψ 0 0= +$ao (13)
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which are the exact solutions of the separate Schrödinger
equations for the two operators. They are derived in detail in
paper [1] and can be cast into the form
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where the translational mode of the lattice (ω
N
=0) has to be

excluded. Note here that

( )
( )

( )

$ ; $

$

;

*

U b b t

b b t

U t

o o k o ok o

o k o ok

o o o o o

0

0 0 1

≡ =

=

= = =

+

β β β

β β

β β β β
(17)

holds and the time dependent coefficients are given by [1]
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Note, that in case of the amide-I oscillators also the mode
with k=N has to be included. Then with

( ) ( )ψ ψ ω ψ0 1 0= ≡ + −J (19)

our exact wave function can be written as
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Further the different orders µ are defined as
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In this paper we want to restrict the expansion to µ=3,
since the calculation of higher order terms becomes too tedi-
ous. This is also the reason why such expansions are only
useful for the study of the very short time behaviour of exact
solutions, but not for general simulations, where a large
amount of high order terms would be necessary to obtain
reliable results for times say in the ps-scale. In our previous
paper [1] we had studied in detail the time scale on which
such a third order expansion is valid. For comparisons with
the corresponding results of |D

1
> simulations we are inter-

ested in the norm of the states of different order in time, the
expectation values H(µ,t) of the Hamiltonian, N

n
(µ,t) of the

exciton number operators and B
k
(µ,t) of the phonon annihi-

lation operators. From the latter ones we can compute easily
expectation values q

n
(µ,t) of the displacement and p

n
(µ,t) of

the momentum operators:

( ) ( ) ( )H t t J tµ ψ µ ω ψ µ, , $ $ ,= +

( ) ( ) ( )N t t a a tn n nµ ψ µ ψ µ, , $ $ ,= +

( ) ( ) ( )B t t b tk kµ ψ µ ψ µ, , $ ,=

( ) ( ) ( )B t t b tk k
* , , $ ,µ ψ µ ψ µ= +

(22)

( ) ( ) ( ) ( )S t t t N tn
n

N

µ ψ µ ψ µ µ, , , ,= =
=

∑
1

( ) ( )[ ]q t
M

U B tn
k

nk k
k

N

µ
ω

µ, Re ,=
=

−

∑ 2

1

1
h

( ) ( )[ ]p t M U B tn k nk k
k

N

µ ω µ, Im ,=
=

−

∑ 2
1

1

h

where U is the eigenvector matrix of the decoupled lattice in

real representation and is discussed in detail in Appendix B
of the preceding paper [1]. The explicit expressions for these
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expectation values are given in the Appendices, since they
are rather massy.

The first order wave function vanishes with our choice of
|ψ(0)>, and thus we proceed directly to the second order cor-
rection which is given by

( )ψ ψ ω ω ψ2 2 0 0= = +$ $ $ $ $Ω J J

( )$ $ $ $ $, ,ω ψ ωJ J b B a B ak k o k o o k o
k

N

0 1 1 1 1
1

1

0= − ++
− −

+
+ +

+

=

−

∑ h

( )$ $ $ $ $J J B b a ak ok k o o
k

N

ω ψ ω0 1 1
1

1

0= − ++
−

+
+

+

=

−

∑ h (23)

h hω ψ ω ψk k k
k

N

k k k
k

N

b b b b J$ $ $ $ $+

=

−
+

=

−

∑ ∑= =










0

1

1

1

1

0 0

Leading finally to

( )
( )

ψ ω2 1 1 1 1
1

1

1 1 1 1

0

0

= − + =

= +

+
− −

+
+ +

+

=

−

− −
+

+ +
+

∑J b A a A a

a a

k k o k o o k o
k

N

o o

h $ $ $

$ $ $ $

, ,

Θ Θ

(24)

$ $ ;, , ,Θ± ±
+

=

−

± ±≡ − ≡ +∑1 1
1

1

1 1J A b A B Bk o k k
k

N

o k ok o khω

The full second order wave function is then

( ) ( )ψ ψ ψ2 0
2

2

2 2= − t

h
(25)

The third order correction is given by

( )( )
( )

ψ ψ

ω ω ω ψ ω ψ ω ψ

ω ψ ω ψ ω ψ

3 3 0

0
2

0
2

0

2
2

0
2

0

= =

= + + + + =

= + + +

$

$ $ $ $ $ $ $ $ $ $

$ $ $ $ $ $

Ω

J J J J J

J J J
(26)

With the definition

$ $y B bn k nk k
k

N

=
=

−

∑ hω
1

1

(27)

we obtain for the different terms, where partially results of
the preceding paper are used:

( )
$ $

$ $ $ $, ,

ω ψ

ω

J

J b B a B a B ak k o k o ok o o k o
k

N

2
0

2
2 2 2 2

1

1

2 0

=

= + ++
− −

+ +
+ +

+

=

−

∑ h

(28)

( ) ( ) ( ) ( )
$ $

$ $ $ $

J

J y B B b a ao k ok ok k
k

N

o o

ω ψ

ω

2
0

2 2

1

1

1 1 0

=

= − + +












++ +

=

−

−
+

+
+∑ h

Further the action of our operators on |ψ
2
> yields

[
( ) ]

$ $ $

$ $

,

, , ,

J J b A a

A A a A a

k k
k

N

o k o

o k o k o o k o

ψ ω2
2

1

1

1 2

1 1 1 2 0

= +

+ + +

+

=

−

− −
+

− +
+

+ +
+

∑ h

(29)

and

[ ]
( ) ( )
( )

$ $ $

$ $

$ $

$ $

' '
, '

, , ' , , '

, ,

, ,

ω ψ ω ω

ω

2
1

1

1 1 1 1 1 1

2
1 1 1

1

1

1 1 1

0

0

= − ⋅






⋅ + +

+ +


+

+ + 




+ +

=

−

− − −
+

+ + +
+

−
+

− −
+

=

−

+
+

+ +
+

∑

∑

J b b

B A a B A a

B b A a

B b A a

k k k k
k k

N

o k o k o o k o k o

k o k k o k o
k

N

o k k o k o

h h

h (30)

Collecting all the terms, we can write |ψ
3
> in the form

( )ψ ν
ν ν

ν
3

2

2

1 0= − +
+

=−
∑ $ $Γ ao (31)

where the operators $Γν contain only phonon creation opera-

tors:

( )$ $ ; $ $Γ Γ0
2

1

1

2
2

1

1

≡ ≡+

=

−

±
± +

=

−

∑ ∑J D b J D bk k k
k

N

k k k
k

N

h hω ω

( ) ( )

( )

$ $

$ $
' ' '

'

Γ±
=

−
± ± +

± + +

=

−

≡ +








+

+






∑

∑

1
1

1

1

1

J E F b

G b b

k
k

N

k k k k

k kk k k
k

N

h h

h

ω ω

ω
(32)
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and the real scalar quantities:

D B B Bk o k ok o k≡ + +− +1 14, ,

( )
D B B Bk ok o k o k

±
± ±≡ + +1 2, ,

( ) ( )E B B B Bk ok ok o k o k
±

± ±≡ + +2
1 1, , (33)

( )
F B Bk ok o k

±
±≡ +2 1,

( ) ( )G B B B B Bkk ok ok o k ok o k' ' , ' , '
±

± ±≡ + +1 1

With the help of these abbreviations the calculation of
expectation values, as given in the Appendices, as well as
their programming can be considerably simplified. The total
third order wave function is then given by

( ) ( )ψ ψ ψ

ω ψ ψ ψ

3 2
6

2 6

3

3 3

0

2

2 2

3

3 3

= + =

= + − − +

i
t

J
t

i
t

h

h h

(34)

where the sum of the first three terms is also denoted as |ψ(0)>.
 With the help of the expectation values as given in the

Appendices we performed calculations using cyclic chains
of N=21 units for the so-called standard parameters (W=13
N/m, M=114 m

p
, J=0.967 meV) and two values of the exciton-

phonon coupling constant χ=35 pN and 62 pN as in the pre-
ceding paper. In the initial state the lattice is in its equilib-
rium, i.e. b

nk
(0)=0, and the amide-I excitation is localized at

site o=11, i.e. a
n
(0)=δ

no
. As mentioned above, the accuracies

of S(t) and H(t) are direct measures of the maximal time a
given order of the expansion of the wave function is valid
for, we concentrate first on these two functions. The expec-
tation value of the Hamiltonian H(t) (Figure 6 a,c) remains
very close to its exact value up to roughly 0.10-0.15 ps in
case of the third order expansion. After that the terms which
include explicitely powers of t obviously dominate and lead
to a fast, unphysical increase. In case of the second order this
increase starts somewhat later in time and is less steep. The
deviations from the exact value in the first order are rather
small and increase very slowly, due to the fact that in first
order no explicit powers of t occur. The overall picture for
the norm S(t) is qualitatively the same. Also in this case the
deviations are tolerable up to a time of about 0.10-0.15 ps.
From this, as we have seen in the first paper, we can conlude
that also the other expectation values should be reliable at
least up to roughly 0.1 ps.

In Figure 7 we show the physically more interesting ex-
pectation values of the number operators, displacement and
momentum operators for the units o (o=11), where in the
initial state the excitation is localized and o+1 for a time of
0.4 ps and the two coupling constants under consideration.

Figure 6 (continues next page): The functions H(µ,t) (in
meV, relative to H(t)=H(0)=0) and S(µ,t) (relative to
S(t)=S(0)=1; the graphs corresponding to the different orders
are marked by µ):

(a) H(µ,t), χ=35 pN (b) S(µ,t), χ=35 pN
(c) H(µ,t), χ=62 pN (d) S(µ,t), χ=62 pN
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In the rather short simulation time at sites n<o-1 or n>o+2 no
important dynamics evolve. In all the figures the results of
the corresponding |D

1
> simulations are plotted as dashed lines

and those of the expansion as solid lines with the order indi-
cated at them. The time step in the simulations was 4 fs.
Thus we have 100 time steps exactly at the times where we
computed the expectation values for the expansion. In these
simulations the absolute value of the errors in total energy
were less than 6 peV (exciton-phonon interaction energy be-
tween 0 and -2.4 meV) and the absolute values of the errors
in the norm less than 1 ppb (parts per billion). As mentioned
previously in paper I, we need as initial state for |D

1
>

simulations the form

( ) ( )
( )

a
x

N x
n

no no0
1

1 1
2

=
+ −

+ −

δ δ
(35)

where N is the number of sites in the chain, o the initial
excitation site and x a small, real scalar. This is necessary to
avoid numerical problems due to a

n
 occuring in the denomi-

nators in the equations of motion. However, if we use
x=5·10--3, which is physically irrelevant in long time
simulations, we obtain for very short times between 0 and
0.1 ps spurious minima e.g. in the expectation values of the
number operators N

n
(t) for n<o-1 and n>o+1 of a depth of

about 5 ppm. These spurious minima, not found in the ex-
pansions, can be avoided if x is reduced to x=5·10-5.

The first six parts of Figure 7 show the relevant expecta-
tion values for the smaller coupling constants. It is obvious,
that up to a time of roughly 0.15 ps the |D

1
> results agree

perfectly well with those from the three orders of the expan-
sion, which in this region of time do not differ very much
from each other. In most cases of differences (Fig. 7e,f) ob-
viously the second order starts to deviate from the first one
and then the third order correction brings the curve again
closer to the first order. After about 0.2 ps the explicit factors

Figure 7 (following pages): The expectation values of the
number operators N

o
(µ,t) and N

o+1
(µ,t) together with the

corresponding |D
1
> results, the displacements q

o
(µ,t) and

q
o+1

(µ,t) together with the corresponding |D
1
> results (in

mÅ) and the momenta p
o
(µ,t) and p

o+1
(µ,t) together with

the corresponding |D
1
> results (in meVps/Å; o=11, N=21).

The |D
1
> curves are given as dashed lines, the solid

lines are marked with numbers to indicate the different
orders µ.

(a) N
o
(µ,t); χ=35 pN (b) N

o+1
(µ,t); χ=35 pN

(c) q
o
(µ,t); χ=35 pN (d) q

o+1
(µ,t); χ=35 pN

(e) p
o
(µ,t); χ=35 pN (f) p

o+1
(µ,t); χ=35 pN

(g) N
o
(µ,t); χ=62 pN (h) N

o+1
(µ,t); χ=62 pN

(i) q
o
(µ,t); χ=62 pN (j) q

o+1
(µ,t); χ=62 pN

(k) p
o
(µ,t); χ=62 pN (l) p

o+1
(µ,t); χ=62 pN

(m) q
o+2

(µ,t); χ=35 pN (n) p
o+2

(µ,t); χ=35 pN



J. Mol. Model. 1996, 2 115

Figure 7a-d
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Figure 7e-h
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Figure 7i-l
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Figure 7m-n nearest neighbors. During this process the lattice deforms in
a way which stabilizes the excitation to an extent, that a soliton
can be formed or not. In Fig. 7g we show for completeness
q

o+2
 and p

o+2
. In the short time intervall their values are smaller

than the ones discussed above, however, here the first order
becomes worse and the |D

1
> curves are nearly identical to

the third order results up to roughly 0.25 ps.

Conclusion

In an attempt to study the properties of the |D
1
> approxima-

tion numerically, we have performed long time simulations
over a period of 10 ns and computed the relevant expectation
values of the deviation state and compared them to those

computed from the state ( )$H J DD 1 . This study comple-

ments our previous investigations of the medium time scale
in the order of 100 ps [8]. The expectation values of the de-
viation state, which were already neglegible in the medium
time scale turned out to decrease even in the course of time.

Further we expanded the formally exact solution of the
Davydov Hamiltonian in a Taylor series in the time t, to as-
sess the very short time behaviour also. We found that such
an expansion around t=0 up to third order is valid within a
time of 0.10-0.15 ps. Further the second and third order cor-
rections turned out to be more or less negligible in this range
of time. This is probably due to the fact, that as first order we
chose already a state in which some of the terms in the ex-
pansion are summed to infinite order, resulting in the solu-
tions of the decoupled oscillator system and the small polaron

with powers of t especially in the third order curves start to
dominate and make the expansion unreliable. To obtain an
„exact“ wave function for larger times higher orders of the
expansion would be necessary. One might wonder, why for
N

o
, q

o
 and q

o+1
 the second order curves coincide completely

with the first order ones. For N
o
 the reason is simple, as equa-

tion (A9) shows: second order corrections simply show up
only for sites o-1 and o+1, but not for site o. The fact that for
the q’s also the second order corrections vanish, while this is
not the case for the p’s implies that the second order correc-
tions in the expectation values B

k
(2) must be purely imagi-

nary as equation (22) indicates. Equation (B6) shows that
the only complex factors in the expression for the correc-
tions are a

o-1
J and a

o+1
J. We looked at the numerical values for

these coefficients, and indeed, within the first 0.4 ps their
real part is less than 10-16 and their imaginary part varies be-
tween 0 and 0.5. Therefore it is clear that the second order
corrections influence only the momenta but not the
displacements. The situation for the larger coupling constant
(Fig. 7 g-l) is similar to that for the smaller one, therefore we
don’t want to discuss it in detail. The most important result
of both calculations is, that the |D

1
> results agree very well

with those from the expansion within 0.10-0.15 ps, the time
in which the expansion can be considered as „exact“ solu-
tion. This time is also the most important one for a possible
soliton formation, because the lattice is driven only by
exciton-phonon coupling in these first 100-150 fs where the
excitation starts to move from the initial excitation site to its

q
o+2

 (mÅ) p
o+2

(meV·ps/Å)

t(ps) t(ps)
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limit, respectively. Therefore we conclude that on this time-
scale the two limiting cases govern the dynamics of the sys-
tem. However, for larger times the first order becomes incor-
rect, because in the small polaron limit, starting from a lo-
calized initial excitation, only the initial excitation site is
affected by the exciton-phonon interaction, while due to the
dipole interaction the amide-I excitation spreads over the
neighboring sites also within the |ψ(1)> state. For the time in
which the expansion is valid, however, the results obtained
from the |D

1
> simulation agree very well with it. Thus, to-

gether with the long-time results and our previous work on
medium time scales, we conclude that the |D

1
> approxima-

tion must be very close to the exact solution for times from 0
up to 10 ns.

As it was to be expected from the beginning, an expan-
sion of the exact solution around a single point in time, i.e.
t=0, cannot replace methods using ansatz states for simula-
tion on longer time scales. One could think to compute sim-
ply higher orders of the expansion. The draw back of this
approach is, that for longer time rather high orders would be
necessary, leading to prohibitively complicated expressions.
Also it is known, that attempts to expand wave functions
only around a single point in time usually lead into prob-
lems, when they are applied for longer times. However, there
is another possibility to use the expansion method also up to
larger times, namely to use a given expansion only for a small
time interval, say τ, and use the state obtained as initial state
for a further expansion around t=τ and so forth. If the time
interval is small enough, e.g. τ=0.05-0.10 ps, the expansion
could even be restricted to the first order. However, in this
case the first order becomes more complicated.

Assume time steps lτ with  l=0,1,... and 0<t<τ, then for
l=0 we have the same expansion as discussed above. How-
ever, at t=τ we have the new initial state

( ) ( )( ) ( ) ( )ψ τ τ δ τ τω
0 1 0 0, $ $ $= − ++ +∑ a a a U an

J
no n

n
o o o

(36)

Then our first order state in the second time interval is

( ) ( )ψ τ ψ τ
ω

1 1 10, ,
$ $

+ = + −














− −
t e e

it it
J

h h

(37)

where the different terms can be derived from the exact spe-
cial case solutions given in detail in paper I. For the small
polaron contribution we obtain

(38)

( ) ( )

( )( ) ( ) ( )

ω τ ψ τ

τ δ τ τ

ω

ω ω ω

+ = =

= − +

−

− + − +∑

t e

e a a e a U a

it

it

n
J

no n
n

it

o o o

h

h h

$

$ $

,

$ $ $

0 1

0 0

where the first term can be obtained from equation (A12) of
paper I by insertion of the new initial conditions

( ) ( ) ( )a a bn n
J

no nk0 0 0= − =τ δ ; (39)

and the second term also from equation (A12) by insertion
of

( )
( )[ ]

a en

i B

no

ok k k
k0

2

= ⋅
− −∑ sin ω τ ω τ

δ (40)

( ) ( )b B enk ok
i

no
k0 1= −− ω τ δ

A similar decomposition can be performed for the oscillator
part:

( ) ( )

( )( ) ( ) ( )

J t e

e a a a U e a

it
J

it
J

n
J

no n
n

o o

it
J

o

τ ψ τ

τ δ τ τω

+ = =

= − +

−

− + − +∑

h

h h

$

$ $

,

$ $ $

0 1

0 0

(41)

where both terms can be computed from equation (C9) of
paper I. For coherent state operators, as occurring in the sec-
ond part one only needs to note that the exponential operator
for the oscillator system commutes with them. Thus for time
steps lτ with l>1 with arbitrary coefficients d

n
(lτ) one has

to treat cases like this as a superposition of exact solutions
for the decoupled oscillator system:

( ) ( )

( ) ( )

e d U a

U d e a

it
J

n n n
n

n n
n

it
J

n

− +

− +

∑

∑

=

=














h

h

l l

l l

$

$

$ $

$ $

τ τ

τ τ

0

0
(42)

where all the terms can be calculated individually for each n
as an exact solution of the decoupled oscillator system with
an initial excitation localized at site n, leading to

( ) ( )

( ) ( ) ( )

e d U a

N
U d e e a

it
J

n n n
n

n n

i

N
k m n i

Jt

N
k

nmk
m

− +

−




 +

∑

∑

=

=

h

h

l l

l l

$

cos

$ $

$ $

τ τ

τ τ
π π

0

1
0

2 2
2   (43)

In this way for any time step the contributions to |ψ(1,lτ+t)>
can be calculated, using always |ψ(1,lτ)> as initial state, and
thus the first order approximation can be propagated through
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larger times. However, the time step τ has to be chosen small
enough, that the first order is a reliable representation of the
exact solution. According to the present work τ should be
around 0.05-0.10 ps. Investigations along this line are in
progress, which, as we hope, will lead at least for a few
picoseconds to a state which is nearly identical to the exact
solution. However, the expressions obtained become more
complicated at each time step (see Appendix D), especially
for the computation of expectation values. A simpler possi-
bility would be, to calculate at each  τ from |ψ(1,lτ)> the set
{a

n
(lτ),q

n
(lτ),p

n
(lτ)} and to construct a |D

2
> like state from

them, which in turn could be used as initial state for the next
period. However, in this approximation one could miss the
quantum mechanical phase mixing between phonons and
excitons, which is described by |D

1
> like states. This possi-

bility has to be checked by numerical calculations.
The final step of these investigations will be the intro-

duction of temperature into such expansion methods and to
compare the results with the usually used methods for the
treatment of temperature effects, e.g. Davydov’s method,
which uses an averaged Hamiltonian or our lattice popula-
tion ansatz, where the lattice is populated with thermal
phonons prior to the start of the simulation. For this purpose
we would have to start with an initial state of the form [8]

( ) ( )

( )

ψ ν

ν
ν

ν

ν

0 0 0

0

=

=

+

+

∑

∏

a a

b

n n
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e

k

kk
p

k

$

$

!

(44)

where ν denotes any one of the possible phonon distribu-
tions in the lattice. Then in the usual way we can write down
the exact time evolution as

( ) ( )ψ ψν νt e

it
H

=
−
h

$

0 (45)

with expectation values for an arbitrary operator

( ) ( ) ( ) ( ) ( )A t t A t e Ae

it
H

it
H

ν ν ν ν νψ ψ ψ ψ= =
−

$ $
$ $

0 0h h

(46)

Finally a thermal average results in the desired expectation
value at a temperature T
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(47)

where k
B
 is Boltzmann’s constant and $H p is the phonon part

of the Hamiltonian. Then the final expansion is given by
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l
k l

k l

k l

,
! !

$ $ $

,

=
− 



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⋅

⋅

∑ ∑

+

=

∞
ρ

ψ ψ

ν
ν

ν ν

1

0 0

0

h

(48)

We want to use such an expansion again up to the third order
in both k and l for the case of the small polaron limit and to
compare it then to the results of the different models for in-
clusion of temperature effects into the theory.

In the third and final paper of this series we will present,
on the basis of the discussions in this work and paper I, ap-
plications of the |D

1
> model to proteins with emphasis on the

question, whether or not Davydov solitons are stable in such
systems at 0K and at physiological temperatures. Further we
will present vibrational spectra of proteins, calculated from
the dynamics as obtained with our model.
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Appendix A: Expectation Values of the Exciton Number Operators and the Norm

The expectation values of the number operators for the excitons in the different orders m of the wave function are given by

( ) ( ) ( )N t t a a tn n nµ ψ µ ψ µ, , $ $ ,= +
(A1)

and the norm of the states can be obtained by direct calculation of S(µ,t)=<ψ(µ,t)|ψ(µ,t)> or by summation of the N
n
(µ,t) over

all sites n, since the total number of excitons equals 1. The zeroth order results in

( ) ( ) ( )N N J N Jn n n0 0 0 0 0= = + − + −ψ ψ ω ψ ω ψ$ $
(A2)

which is easily evaluated and yields (since there is no first order correction N
n
(1)=N

n
(0) and |ψ(0)>=|ψ(1)> holds)
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(A3)

Summation over n yields the norm:

( ) ( ) ( ) ( ) [ ]S N a a U an
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J1 1 3 2 1 2

1
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(A4)

In second order we have to evaluate

( ) ( ) ( ) ( ) ( ) ( ) ( )N N
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N
t

N
t

N
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(A5)

Due to the phonon operators in |ψ
2
> we have

J N Nn n
$ $ψ ψ ψ2 0 2 0= = (A6)

Further, since in <ω| only the exciton operator for site o occurs, while in |ψ
2
> only those for sites o+1 and o-1 are present

( )ω ψ ψ ψ$ $N Nn n2 21 0= = (A7)

holds. Together with

( ) ( )ψ ψ ω δ δ2 2
2 2

1
2

1 1
2

1
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1
$

, , , ,N J A An k o k n o o k n o
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N
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∑ h (A8)
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we obtain
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which summed over n yields the norm
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The third order is more complicated and needs evaluation of

( ) ( ) ( ) ( ) ( )
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Using the well known commutation relations of our operators we obtain
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Collecting the terms yields
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Together with the fact that
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is real and

ψ ψ δν ν
ν

ν3 3
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we finally obtain
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The norm S(3) is then simply given by summation of N
n
(3) over the sites n:

( ) ( )S Nn
n

N

3 3
1

=
=

∑ (A17)

The explicit expression for S(3) is obtained from (A16) by replacing on the right hand side the term N
n
(2) with S(2) and by

leaving out the Kronecker δ’s.

Appendix B: Expectation Values of the Phonon Operators

In this Appendix we want to calculate the expectation values of the phonon annihilation operators. Note that their complex
conjugates are the expectation values of the phonon creation operator. These expectation values are

( ) ( ) ( )B bk kµ ψ µ ψ µ= $
(B1)

The first expectation value in this series, B
k
(0)=B

k
(1) is given by
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where the terms are
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and thus the final result reads as
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For the third order wave function we have to compute
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The two mixed terms can be reduced to
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Now we have to evaluate the individual expectation values:
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The contributions to the next term are
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Further
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and thus
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The final expectation value is
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where
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Then B
k
(3) is given by
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The expectation values of the displacement and momentum operators can be computed simply from B
k
(µ) and B

k
*(µ) as

decribed in the main text.

Appendix C: Expectation Values of the Hamiltonian

Since the Hamilton operator is hermitian, we can write for the expectation value for the first order wave function, omitting the
vanishing contributions of the total of 18:

( ) ( )H H J J J J J J J J0 1 20 0 0 0= = + − + + − = − + −
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and thus we obtain finally for H(1)
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For the second order we need the following expectation values for |ψ
2
> [with equation (29)]
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ψ ψ ψ ψ ψ ω ψ2 2 2 2 2 20$ $ $J H= ⇒ =

and the total function H(2) is given by
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Since of the six individual expectation values contained in ( )ψ ψ1 2
$H four are vanishing we arrive at
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For the third order correction we have to evaluate
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is obviously real, and thus [ ]Im $ψ ψ2 3 0H = , it remains to calculate
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where we obtain for |ψ
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and thus

( ) ( ) ( )ω ψ β β ω β βω ω$ $ $ $ $ $
* * * *H a J a B b B b bo o o o k ok ok o ok ok o k

k

N

3 1 1 0 0
1

1

0 0 0 0= +





+ + +



− +

=

−

∑Γ Γ Γ Γh (C14)

The explicit evaluation of the expectation values results in
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Finally, the action of the Hamiltonian on |J> leads to
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and thus the expectation value of the Hamiltonian is given by
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which yields
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and thus
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Finally we have to calculate the three parts of the expectation value of the Hamiltonian with the state |ψ
3
>. As first step we

evaluate the exciton-phonon interaction part:
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The expectation values occurring in (C20) had been calculated already in Appendix B and thus we can write directly
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The phonon part yields
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( )0 00
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Finally we have to evaluate the expectation value of the operator $J :
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From this we obtain
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Then the complete expectation value, multiplied with the appropriate factor is given by
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Then our final result is given by

( ) ( ) ( ) ( )H H H H3 2 3 3= + ′ + ′′
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[equ. (C8)] (C26)
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Appendix D: Propagation of the First Order Wave Function to Larger Times

In this Appendix we want to show for some time steps τ the explicit formulas for the dynamics as they result from the
calculation of the individual terms. The index µ=1 we drop from the states in the following. We consider steps lτ,  l=0,1,...
and times t with 0 ≤ t ≤ τ. As already mentioned in the main text we have for the first period, l=0:

( ) ( )( ) ( ) ( )ψ δ ωt a t a a t U t an
J

no n
n

o o o= − ++ +∑ $ $ $0 0
(D1)

From this we obtain for t=τ:

( ) ( )( ) ( ) ( )ψ τ τ δ τ τω= − ++ +∑ a a a U an
J

no n
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(D2)

which is the initial state for the first order term in the second period, l=1:
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Before explicitely writing down the states resulting from equation (D3), we want to define some quantities to keep the final
formulas shorter:
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This yields for the first term, together with the expressions for the small polaron limit from paper I:
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Further we act with the second operator on the initial state, observing that the exponential operator and coherent state opera-
tors commute with each other. This yields:
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Collecting the terms and substracting the initial state leads to
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This yields directly the initial state for the third period:
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From this state we obtain
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where the coefficients are given by
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with the different coherent state amplitudes
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and coefficients
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Now we can write down the state vector for the third interval:
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From this expression we can compute now the initial state for the fourth period and so on. It is obvious that with each period
the expressions for the state vectors become more complicated. However, the calculation of expectation values from these
states is rather simple, because they are all just superpositions of free exciton, |D

1
>- and |D

2
>-type states. The problem is that

their derivation becomes lengthy and tedious. Currently we try to find out whether or not it is possible to establish a kind of
recursive algorithm for this task.
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