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Abstract

We performed long time simulations using the>|Bpproximation for the solution of the Davydov Hamiltonian.

In addition we computed expectation values of the relevant operators with th(—:l:hja(té)| D1> and the devia-

tion [>> from the exact solution over long times, namely 10 ns. We found that in the very long time scate the |D
ansatz is very close to an exact solution, showing expectation values of the relevant physical observables in the

state('qD /J)| D1> being about 5-6 orders of magnitudes larger than in the deviationdstalte the intermedi-

ate time scale of the ps range such errors, as known from our previous work, are somewhat larger, but still more
or less negligibly. Thus we also report results from an investigation of the very short time (in the range 0-0.4 ps)
behaviour of the | state compared with that of an expansion of the exact solution in powers of time t. This
expansion is reliable for about 0.12 ps for special cases as shown in the previous paper. However, the accuracy
of the exactly known value of the norm and the expectation value of the Hamiltonian finally indicates up to what
time a given expansion is valid, as also shown in the preceding paper. The comparison of the expectation values
of the operators representing the relevant physical observables, formed with the third order wave function and
with the corresponding results of $bsimulations has shown, that our expansion is valid up to a time of roughly
0.10-0.15 ps. Within this time the second and third order corrections turned out to be not very important. This is
due to the fact that our first order state contains already some terms of the expansion, summed up to inifinite
order. Further we found good agreement of the results obtained with our expansion and those from the corre-
sponding |> simulations within the time of about 0.10 ps. At later times, the factors with explicit powers of t

in second and third order become dominant, making the expansion meaningless. Possibilities for the use of such
expansions for larger times are described. Alltogether we have shown (together with previous work on medium
times), that the |[> state, although of approximative nature, is very close to an exact solution of the Davydov
model on time scales from some femtoseconds up to nanoseconds. Especially the very small time region is of
importance, because in this time a possible soliton formation from the initial excitation would start.
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Introduction Davydov Hamiltonian @), where > is the initial state,

In the Introduction to the preceding paper [1], we discussed & Taylor series in time and compare the results with those
already the basic concepts of the Davydov soliton mechdf®m @[> simulation. Attempts into this direction have been
nism for energy transport in proteins [2-5]. Therefeore we/€POrted previously by Cruzeiro-Hansson, Christiansen and
refer the reader to that paper and references therein, and e%c_ott [9]. However, they restricted their considerations to a
pecially to the most recent and best review of the state of afimer and found that second order terms can be neglected
in Davydov soliton theory given by Scott [6]. In our preced-only for.tlmes much smgller thgn 0.1 ps. Further they give no
ing paper [1] we studied special cases of the DavydoyFomparisons Fo approximate S|mulgt|ons and for the case Qf
Hamiltonian. In these cases it turned out that the ¢dsatz N Sites they give a system of equations, but draw no numeri-
state of Davydov [3] represents the exact solution, if the ini<@l conclusions from it.

tial state is restricted to JB [2] like states with site inde-

pendent coherent states amplitudes. Further we found that o o

expansions of the exact wave functions in polynomial seriesdd@vydov's Hamiltonian and the |3> Approximation

in time and truncation of these polynomials after the third

order yield reliable results for times up to 0.10-0.12 ps for! & Hamiltonian, as well as the form of the4@pproxima-
the lattice in the small polaron limit, and 0.6-0.8 ps for thetion have been discussed extensively in the literature and in

amide-| oscillators in the decoupled case. More importantih€ Preceding paper [1]. However, for the purpose of clearcut
we found that the accuracy of the norm and of the expectdi€finitions in the following, we repeat here the form of the
tion value of the Hamiltonian (total energy) corresponds exHamiltonian as it is used extensively in this work. The full
actly to that of the expectation values of the exciton numbefiamiltonian can be written as

operators in the decoupled case and that of the displacement

and momentum operators in the small polaron limit. Thus N N-1
norm and total energy are a measure of the time scale withifiy =H+D ; D=E, Z ala, +% Z hoo )
which a given expansion yields reliable results. In the present n=1 k=1

work which is based on [1] and makes use also of the explicit
forms of the wave functions discussed there we determin
similar expansions of the exact solution of the full Davydov
Hamiltonian up to the third order and compare them on th
very short time scale with the results ofimulations in
order to get quantitative informations on the reliability of
that ansatz which is not an exact solution of the time depen
ent Schrddinger equation. Further, using concepts developed
in [7] and applied to a medium time scale in the range of a _itQ +1N‘1h o
few picoseconds in [8], we study the behaviour of the errorT _ szl wk% 2
: . ®)=e |w)
introduced by the use of the {bansatz on large time scales
of the order of nanoseconds.

This study completes our previous one [8], where we conwhere |> obeys the time dependent Schrodinger equation
cluded that in the subspace of basis functions spanned by the
|D,> ansatz, the errors are negligible within times of a few .
picoseconds. From this result we concluded, that on this timéh§| llJ> = H| llJ> 3)
scale the |D> ansatz should be rather close to an exact solu-
tlo.n,'because we e>.<pe(.:t that if the e>§act solution 'Would CONgith the simplified Hamiltonian
tain important contributions from basis states not included in
[D,>, this should cause large errors also in the space spanned =
by |D>. However, the very small time scale is an importantH =J +w (4)
one, because in that time a possible soliton formation from a
localized initial state starts, especially since the lattice is iniwhere
tially in equilibrium and only driven by the interaction with
the localized initial excitation in the chain of amide-I oscil- N
lators. In case of a possible soliton formation exactly theseg — _ (A+ 3+ q )
initial displacements of the lattice formed in the first fewej le At h S
hundredths of a picosecond stabilizes the amide-I excitation

against dispersion. To investigate this range of time we ex- _ _ _
Here J is the coupling constant between two neighboring

pand the exact solutioh®) = EXF{‘”:| Dt/h]|q’o> for the  amide-l oscillators. Further

fhere E is the amide-I excitation energy, (@) are annihi-
lation (creation) operators of amide-| vibrational quanta at
Site n in the chain and_are the eigenfrequencies of the
decoupled lattice. All definitions and details can be found in
él]. As also shown in [1] the exact state vecor is then

®)
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oN1ogo N . ., O . 0 A
W= Zhwk (b bk+z Bnk(bk+ bk) a, a i7bpy :hwk(bnk+3nk)‘JDDmn1(an K bn) +
k=1 E n=1 O an

a1 U
(6) +Dn,n—1(bn—1k_bnk) n O
an O

X 1
Bnk E——[Un+lk—unk] X k# N
Wi
k y2Mcy where the coherent state overlaps are given by

where Bk (6;) is the annihilation (creation) operator for an

0 N-1

- 1 2 * :
acoustical lattice phonon k, M is the mass of a siteyati Dim = expEl-E Z %bnk— bmll + D mic B b rv% (9)
coupling constant between the amide-| oscillators (excitons) H"f

=

and the lattice. The matrig contains the normal mode co-

efficients in the real representation for the decoupled lattice.

Again the details are derived in paper [1]. We use for the ] . )

present study cyclic boundary conditions and chains with ak©"g Time Simulations

odd number of sites (N), thus n=N+1 equals n=1 and n=0 . i
equals n=N.The |Q> ansatz fory> has the form (the re- In this sub-chapter we want to study the important question

striction at the sums over k just excludes the translationdf the long-time behaviour of the errors introduced by the
mode) |D,> ansatz. One cannot exclude that these errors, which are

very small for intermediate times of some ps (see [1] and
references therein for details), might increase with time. In
our case, the basis space of|3 incomplete, since it is not
n=1 an exact solution. However, from the magnitude of the errors
(7) introduced within the basis space of3Pwe can estimate
the importance of the basis states missing in the ansatz. If

0 N-1 ,0 N7 O these missing states would be important in the exact solu-
Un|0), =exp 2 [onic(t) " Txily b (t)bi %0% tion, one would expect, that the errors made by the ansatz
ai=] H =1 should be rather large already within the subset of the basis
a\l—l . . space spanned by [B For the numerical investigation of
= expr] [bnk(t)b; - b’;]k(t) bk]§o>p these errors we can use the fact that [7]
Ba
(78 -Hp)D1)=35) (10)

Note, that the last equality holds only if the operator acts

on the phonon vacuum |g>and that in our notat!on where the form of the error staie s function of {gt),b_(t)}

|O>:|O>G|O>P’ where |02is the vacuum state for the amide-| as computed in a |B simulation is known [7]. In ournk revi-

oscillators (exciton vacuum). The (t) are the coherent state P l . oo P

amplitudes and |@)F is the probability to find an amide- ous work [8] we have derived expressions for the expecta-
. ) : tion values of different operators for the two states

guantum at site n. The equations of motion for these quanti-

ties can be obtained with the Euler-Lagrange equations o HD/J) D1) and p> and compared them in numerical cal-

the second kind (see again [1] and references therein for al ) i
details): culations. Such a procedure can serve as the appropriate tool

to answer our above mentioned question.
As initial state state we use the same one as described in

N detail in paper [1], section 111.3. It consists of a sech-func-
ina, = _n z (bnkb*nk‘ Bnkbm)an"' tion for the poeﬁicients in the pscnlator part and a lattice,
2 =] populated with phonons according to a temperature of 300K.
N-1 We performed calculations for different exciton-phonon cou-
* 2 H =
+z hooy %nk(bnkJr bnk)+| b %] _ pling constants, namefy 60_pN, 120 pN, 180 pN, and 240
& pN, and chains of length N=21 units. For the fourth order

Runge-Kutta simulations we used in casexot 60 pN a

_‘J(Dn,mlam“ Dy rflaf’rl) time step of 0.1 fs and a total simulation time of 10 ns, corre-
sponding to 10time steps. In this period the error in total

(8) energy (0.796 eV) was typically between 0 and -7 peV (the



106 J. Mol. Model.1996,2

exciton-phonon interaction energy was between 0.5 and -4.5 Figurel shows the time evolution of the probability to
meV) and the error in norm between 0 and -0.006 ppb (partind an amide-1 quantum at a site n for the three different
per billion). The computation time was 2.48 minutes of CPUcases. While we observe a complete dispersion of the initial
(Central Processing Unit) time for the simulation of 1 ps andsech-distribution in case of the two smaller couplings, the
thus 413 hours of CPU time for the complete simulation orinitial excitation remains localized in the range of the initial
an IBM RISC/6000-320H workstation. In the other three cal-distribution up to 10 ns in case of the larger couplings. For
culations we used a time step of 1 fs for the same total simy=60 pN a considerable fraction of the excitation localizes
lation time and in these cases the absolute values of the étself at more or less a single site close to the center of the
rors in total energy were less thaped/ (x=120 pN, exciton- initial excitation after 2-3 ns and remains there until the end
phonon interaction energy, Fbetween 0.5 and -12 meV), of the simulation. Such spontaneous localizations cannot
less than 44ueV (x=180 pN, exciton-phonon interaction en- occur for the larger coupling, because in these cases the ther-
ergy £, between -5 and -25 meV) and less than gey mal disorder in the lattice is more strongly coupled to the
(Xx=240 pN, exciton-phonon interaction energyletween -  oscillator system. In Figure 2 we show the norms

2 and -45 meV), respectively. The absolute values of the er- R R

rors in the norms were less than 4 ppm (parts per millionSH (1) = <(H/J) D1|( H/J) Q> for the four values of the cou-
X=120 pN), 80 ppmx=180 pN) and 750 ppnx£240 pN).

From this it is obvious that a time step of 1 fs is sufficient topllng Consf[ant. Opwously the norms show a decr'easmg ten-
dency for increasing coupling, namely from maximum val-

obtain corre_ct results for S|mqlat|on times of 10 ns..Algc') forues of roughly 700060 pN) to 1200X=240 pN). For the
the case 0f=60 ps the larger time step caused no significant . : .

) smallest coupling the function shows a fast oscillation around
changes in the results.

5000 when time increases, while for the largest coupling a

AN
«\\\\\4\\\ SN

7

10000

Figure 1. Long-time evolution of t)=<D |a *a |D,> for
four values of the exciton-lattice coupling constant.
(a) x=60 pN (b) x=120 pN

(c) x=180 pN (d)x=240 pN
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very slow oscillation around 800 starts after roughly 3 ns.
Fig. 3 shows t)=<9|d> for the different couplings. In all

of time for four values of the coupling constant (note thatcases the error remains about 8 orders of magnitude smaller
t=80 ps is the first time in the simulation where our programthan $(t), indicating that within the | basis space no sig-
prints out intermediate results, however, in the plots for oumificant errors of the norm of the state occur. Note, that the
long time simulations t=0 and t=80 ps are indistinguishable): S (t)-plots are drawn relative tq,8=80 ps). Moreover, in all

(@) x= 60 pN (S relative to §(t=80 ps)=684,827.548170)
(b) x=120 pN (§ relative to $(t=80 ps)=688,883.505744)
(c) x=180 pN (S relative to §(t=80 ps)=694,750.770186)
(d) x=240 pN (§ relative to §(t=80 ps)=710,240.923822)

cases Jt) increases within the first 500 to 1000 ps to values
around 2.3 and afterwards decreases to a small amplitude
oscillation around 2.03 and 2.00, independent of the value of
the coupling constant. Even after 10 ns the mean value of
S.(t) still seems to decrease further very slowly. Therefore



108 J. Mol. Model.1996,2
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Figure 3: The norm §t)=< /6> as function of time for four Figure 4 shows the time evolution of the number opera-
values of the coupling constant: Ny . . .
tors for the oscillatorsNn (t) =<(H/J)D1 a, & ( H J) q>
() x= 60 PN (b)x=120 pit d Figure 5 those for th tatE(=<]4, 45> Al
(c) x=180 pN (d)x=240 pN and Figure ose for the error stat&(tj=<54|§,4,|6>. Also

here the errors show no tendency to increase with increasing

time, in contrast, they have a constant order of magnitude
we can conclude, at least on the basis of the norms, that tilerough all 10 ns. They follow closely the time evolution of
error introduced by the incomplete basis space of the ansalg "(t), however, being 6 to 7 orders of magnitude smaller,
decreases in time, and that the>|Btate becomes more ac- thus as in case of the norms, the deviations are completely
curate in the long time limit. negligibly, also over times as large as 10 ns. The same holds
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Figure 4:

The expectation valuedp, (t) = <(|:|/J)D1

between two lines is 80 ps):

(b) x=120 pN
(d)x=240 pN

(a) x=60 pN
(c) x=180 pN

qE(t):<6|dn|6>, respectively, as  well

ph' (1) = ((F/3) | ul( /9 1) and pE (1) = (3|pul) , re-
spectively, not shown here, exhibit a quasi-random behaqu;) —e I

iour as it is to be expected because of the ,thermal” excita-
tion in the initial state. However, also here the errors closely

&%/ 9n)
as functions of site and time for the different values of thesmaller, which does not change in the large time scales of

coupling constant (also here and in Fig. 5-9 the first line
drawn in the plot is that at t=80 ps, also the time distance

109

200000

N

0

Qe \ A\ WO
A }\\\“\“\\\\Q\\\\\\Q\\ W

A
R

100000

200000

100000

follow the corresponding pictures computed from the state

(ﬁD/J) D1> , and are about 5 to 6 orders of magnitude

our simulations.
Therefore we can conclude from our results, that for large
times |D> is close to the exact solution, with nearly negligi-

ble deviations. Further we know from our previous simulations
on intermediate time scales in the range of ps, that in this
region the errors are somewhat larger, although still more or
less negligible [8]. In the next section we study the time

around 0.1 ps, where a possible soliton formation would start

from localized initial states.
for the expectation values of the displacement and momen-

tum operators. Gp (t):<(|:|/J)D1|EIn|('A‘|/J) D1> and

Expansion of the Exact Wavefunction

aS e start, as in our preceding paper [1], from the well-known
ansatz for the exact solution of the Schrédinger equation

. (j +(I))

|¢0> (11)
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Figure 5: The expectation values t)=<J|a *a |5> as Then the exponential in the exact wave function is ex-
functions of site and time for the different values of thepanded in a Taylor series yielding
coupling constant:

(a) x=60 pN (b)x=120 pN I o_oitn
(©) =180 pN  (d)x=240 pN |w(D) = VZOV @+3)'lwo) + T=-E

0 RN IR A A A
Note here that the two parts of the Hamiltonian do n0t| LI-'('f» = E1+T(J+<D)+7(JZ + J<D+<DJ+<02)+
commute = (14)
T3 (

+— (32 + 320+ 0I2+H 23+

[0,9]=03- o= c= % Nz_lmk ehk(b: ¥ Aq()a ]
n=1 k=l +36? + 63+ X+ 0 ) %LLIO
(12)

G, = Jgé;ﬂ + AaJrrr—l)éﬂ_ B (A1t an 1)5 rieSFrom this expansion we can immediately extract two se-

As model system we use a cyclic chain of N (N odd) o _y
units and an initial excitation of an amide-I oscillator at site °'|T> ZT_J |L|‘| > TJ|LIJO> | J>

The lattice is initially in its groundstate. Thus we have &

(15)
|Wo)=45[0) 1) IT2)= Z—wlw e'| o) =|w)
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which are the exact solutions of the separate Schrédinger
equations for the two operators. They are derived in detail i ”l i
paper [1] and can be cast into the form

5 v!
- (21)
- J (ot - A
9=y R()&[0) © |o)= L& (|9
n=1 . Ql =0
Z N o 16 A PSR
o) Sl 9 0, =0+ 30
Uy =Uo D Up()=e © N Y IR Y P T SN LA A A
Q3 =W +J°O+ N+ I+ I+ L J
where the translational mode of the lattiag<0) has to be . . .
excluded. Note here that In this paper we want to restrict the expansioqnu@,
since the calculation of higher order terms becomes too tedi-
U, 0)=|Bo) bk|B ok(t)|l30> ous. This is also the reason why such expansions are only
useful for the study of the very short time behaviour of exact
(Bo [0k =(Bo|box(t solutions, but not for general simulations, where a large
a7 . .
< > < > U () i < "3 >_ 1 amount of high order terms would be necessary to obtain
=U, : o =

reliable results for times say in the ps-scale. In our previous

paper [1] we had studied in detail the time scale on which
holds and the time dependent coefficients are given by [1] such a third order expanSion is valid. For Comparisons with
the corresponding results of {simulations we are inter-

1 N Zﬂk(n_o) it o m”k% ested in the norm of the states of different order in time, the
ap(t)== Z eN e N expectation values H(t) of the Hamiltonian, Nu,t) of the

N k=1 exciton number operators ang(jBt) of the phonon annihi-

lation operators. From the latter ones we can compute easily

N 32 expectation values (@,t) of the displacement and(p,t) of
z an )I = (18)  the momentum operators:
n=1

- ZBok[sw(wkt wkt] 5 H(p, t) = <UJ(Ua t)|63+ J|llJ(p, t)>
ad(t)=e = |a§’(tj =1

(it =<wut & 2w )
Z Bok[cos(wkt ]
=iyt .

bok (t) = Bo ( ‘ 1) P W()= e <qJ 0w (i t >

Note, that in case of the amide-I oscillators also the modeB IJ t :<lIJ bk |llJ U, t>

with k=N has to be included. Then with (22)

0(0) =] 8(0) =13} +[)-] o) 9 s )= (ul oY) =3 M)

n=1
our exact wave function can be written as
® TV a(ut)= z nkRE[BkIJt]
w(©) =[w@)+ Y - Qulwo)
v=2

(20)

f)v = ((I)+j)v —QV -3 pn(p, t) = Nz_l,IZthkUnk Im[Bk(u, t)]
k=1

Further the different ordeys are defined as

whereU is the eigenvector matrix of the decoupled lattice in

real representation and is discussed in detail in Appendix B
of the preceding paper [1]. The explicit expressions for these
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expectation values are given in the Appendices, since they
are rather massy. INETTINE
The first order wave function vanishes with our choice of N-1

|LLI(0')>, anq thgs we proceed directly to the second order cor= 32 Z hw) f); (B&Z’ KAh2 +2 By ay+ Bg 2 R 2) o>
rection which is given by

|¢2>:éz|¢o>:(j®+®j)¢0> (28)

N-1

)=t b (B 113 a® Bos o )0
k=1

N-1
I o)==y hox Bokblt(é;—l"'AaEl)@ (23)
k=1 Further the action of our operators ¢r yields
N-1 e N-1 e s 0 ) N-1
ﬁzhwkbkkao):Zhwkt& WJLIJo):O% Jwy)=1 Zhwktk['% Lk B2+
=1 k=1 k=1
A . (29)
+(Ao—1,k + Aor, k) &G+ Agy ks 2]| 0)
Leading finally to
= nt At ~t and
|Wy)= ‘JZ hooy by (Ao—lkao—l+ Asy k331)0> =
k=1 AN-1
:(é—lé;—1+é+1ég+1)0> 6~)|L|-'2>:_J|:|Zhwkhwk‘6; by O
K%
(24) . -
N1 [[:Bo—l,kAo—lkacrl"' Ba1 kAs 1 ka@1]|0>+
0.1 =3 hw AerikBl 5 Awik = Bkt Byrk N-1 R X
Z + Z (hwk)2 gBo—Lk + bE)AM Kalg 1+ (30)
k=1
The full second order wave function is then +(Bo+Lk + BE)AM, kg:ﬂ%@ﬁ
t2
W) :|L|’(0)>‘2h—2| W2) (25)
Collecting all the terms, we can writg,} in the form
The third order correction is given by 2 ( )V .
5 [w3)= > () N[0 31
|W3)=Q3lWo) = VZZ 1
<o Y D) w0 wo)s e
_ (w+ )| lJJ2>+wJ |4Jo>+ B |llJo> (26) :(\;?:.re the operatorév contain only phonon creation opera-
N-1 -
With the definition Fo=9? ho Db Fip= Y ho ol i
Yn = Z hoo By by (27)

we obtain for the different terms, where partially results of

the preceding paper are used: (32)

()5 b 0
+z ho Gy b be E
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and the real scalar quantities:

Dk =Bo-1k *4Bok*+ Ba1 k

Dki) =Bok + Barr,kt B2, k

Elgi) = B3, +(Bok + Baa, k) Ba1, k (33)
I:k(i) =2Bok + Bora k

+
G|£k-) = BokBok *+ Ba, k( Bok+ Baz, k)

With the help of these abbreviations the calculation of
expectation values, as given in the Appendices, as well as
their programming can be considerably simplified. The total
third order wave function is then given by

9(3) = w1 ws)=

t2 13 (34)
=|w>+|3>‘|¢0>‘?|‘“2>+' $|‘“3>
where the sum of the first three terms is also denotg@d®s | H ( me\/t) (C)

With the help of the expectation values as given in the
Appendices we performed calculations using cyclic chains
of N=21 units for the so-called standard parameters (W=13

W
(@)
Tt

N/m, M=114 m, J=0.967 meV) and two values of the exciton-

phonon coupling constagt=35 pN and 62 pN as in the pre-

ceding paper. In the initial state the lattice is in its equilib-

rium, i.e. b (0)=0, and the amide-I excitation is localized at L
site 0=11, i.e. §0)=3_. As mentioned above, the accuracies 20k

of S(t) and H(t) are direct measures of the maximal time a
given order of the expansion of the wave function is valid
for, we concentrate first on these two functions. The expec-
tation value of the Hamiltonian H(t) (Figure 6 a,c) remains (3>
very close to its exact value up to roughly 0.10-0.15 ps in

case of the third order expansion. After that the terms which 10
include explicitely powers of t obviously dominate and lead
to a fast, unphysical increase. In case of the second order this : (2>
increase starts somewhat later in time and is less steep. The _
deviations from the exact value in the first order are rather - (1)

. o Olrerrerrrrrreeeeees 4 {(ps)
small and increase very slowly, due to the fact that in first 0 o5 1 a5 2 s 3 p

order no explicit powers of t occur. The overall picture for

the norm S(t) is qualitatively the same. Also in this case the

deviations are tolerable up to a time of about 0.10-0.15 ps.

From this, as we have seen in the first paper, we can conlugggure 6 (continues next page)The functions H{t) (in

that also the other expectation values should be reliable aheV, relative to H(t)=H(0)=0) and $(t) (relative to

least up to roughly 0.1 ps. S(t)=S(0)=1; the graphs corresponding to the different orders
In Figure 7 we show the physically more interesting ex-are marked byu):

pectation values of the number operators, displacement and

momentum operators for the units o (0=11), where in thga) H(u,t), x=35 pN (b) Sf,t), x=35 pN

initial state the excitation is localized and o+1 for a time of(c) H(u,t), x=62 pN (d) Sf,t), x=62 pN

0.4 ps and the two coupling constants under consideration.
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In the rather short simulation time at sites n<o-1 or n>0+2 no
important dynamics evolve. In all the figures the results of
the corresponding |B simulations are plotted as dashed lines
and those of the expansion as solid lines with the order indi-
cated at them. The time step in the simulations was 4 fs.
Thus we have 100 time steps exactly at the times where we
computed the expectation values for the expansion. In these
simulations the absolute value of the errors in total energy
were less than 6 peV (exciton-phonon interaction energy be-
tween 0 and -2.4 meV) and the absolute values of the errors
in the norm less than 1 ppb (parts per billion). As mentioned
previously in paper I, we need as initial state for>|D
simulations the form

" (0) _ Sno + x(l— > no)

where N is the number of sites in the chain, o the initial
excitation site and x a small, real scalar. This is necessary to
avoid numerical problems due tpaccuring in the denomi-
nators in the equations of motion. However, if we use
x=5-10%, which is physically irrelevant in long time
simulations, we obtain for very short times between 0 and
0.1 ps spurious minima e.g. in the expectation values of the
number operators ) for n<o-1 and n>o+1 of a depth of
about 5 ppm. These spurious minima, not found in the ex-
pansions, can be avoided if x is reduced to x=5-10

The first six parts of Figure 7 show the relevant expecta-
tion values for the smaller coupling constants. It is obvious,
that up to a time of roughly 0.15 ps the>Desults agree
perfectly well with those from the three orders of the expan-
sion, which in this region of time do not differ very much
from each other. In most cases of differences (Fig. 7e,f) ob-
viously the second order starts to deviate from the first one
and then the third order correction brings the curve again
closer to the first order. After about 0.2 ps the explicit factors

Figure 7 (following pages):The expectation values of the
number operators Nu,t) and N, (u.t) together with the
corresponding |D> results, the displacements(g,t) and
q,.,(ut) together with the corresponding [P results (in
mA) and the momenta(p,t) and p,,(ut) together with
the corresponding | results (in meVps/A; 0=11, N=21).
The |D> curves are given as dashed lines, the solid
lines are marked with numbers to indicate the different
orders L.

(@) Ny(ut); x=35 pN
(¢) qut); x=35 pN
(e) p(ub); x=35 pN
(9) N(ut); x=62 pN
(i) g,(ub); x=62 pN
(k) p(ut); x=62 pN
(m) q,,(ut); x=35 pN

(b) N,,(1b); x=35 pN
(d) q,,(1b); x=35 pN
() n.,(1D; x=35 pN
(h) N,,(ub); x=62 pN
() 9,,(ub); x=62 pN
() p,,(ub); x=62 pN
(n) R.,(1); x=35 pN
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qo+2 (mA) p0+2
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Figure 7m-n nearest neighbors. During this process the lattice deforms in

a way which stabilizes the excitation to an extent, that a soliton
can be formed or not. In Fig. 7g we show for completeness
with powers of t especially in the third order curves start tod,,,and p,.. In the short time intervall their values are smaller
dominate and make the expansion unreliable. To obtain alftan the ones discussed above, however, here the first order
.exact* wave function for larger times higher orders of thebecomes worse and the Dcurves are nearly identical to
expansion would be necessary. One might wonder, why fothe third order results up to roughly 0.25 ps.
N., g and g,, the second order curves coincide completely
with the first order ones. For Ithe reason is simple, as equa-
tion (A9) shows: second order corrections simply show ugconclusion
only for sites 0-1 and o+1, but not for site 0. The fact that for
the g’s also the second order corrections vanish, while this i an attempt to study the properties of the>|Bpproxima-
not the case for the p's implies that the second order corre¢ion numerically, we have performed long time simulations
tions in the expectation values(B) must be purely imagi- overa period of 10 ns and computed the relevant expectation
nary as equation (22) indicates. Equation (B6) shows thatalues of the deviation state and compared them to those
the only complex factors in the expression for the correc- ~ ,
tions are g’ and a, . We looked at the numerical values for cOMPputed from the StateHD /‘])| D1) . This study comple-
these coefficients, and indeed, within the first 0.4 ps theiiments our previous investigations of the medium time scale
real part is less than 10and their imaginary part varies be- in the order of 100 ps [8]. The expectation values of the de-
tween 0 and 0.5. Therefore it is clear that the second ordefation state, which were already neglegible in the medium
corrections influence only the momenta but not thetime scale turned out to decrease even in the course of time.
displacements. The situation for the larger coupling constant Further we expanded the formally exact solution of the
(Fig. 7 g-I) is similar to that for the smaller one, therefore weDavydov Hamiltonian in a Taylor series in the time t, to as-
don’t want to discuss it in detail. The most important resultsess the very short time behaviour also. We found that such
of both calculations is, that the tbresults agree very well an expansion around t=0 up to third order is valid within a
with those from the expansion within 0.10-0.15 ps, the timaime of 0.10-0.15 ps. Further the second and third order cor-
in which the expansion can be considered as ,exact‘ soluections turned out to be more or less negligible in this range
tion. This time is also the most important one for a possiblef time. This is probably due to the fact, that as first order we
soliton formation, because the lattice is driven only bychose already a state in which some of the terms in the ex-
exciton-phonon coupling in these first 100-150 fs where theransion are summed to infinite order, resulting in the solu-
excitation starts to move from the initial excitation site to itstions of the decoupled oscillator system and the small polaron
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limit, respectively. Therefore we conclude that on this time-where the first term can be obtained from equation (A12) of
scale the two limiting cases govern the dynamics of the sygpaper | by insertion of the new initial conditions
tem. However, for larger times the first order becomes incor- ) _
rect, because in the small polaron limit, starting from a lo- n (0): aﬂ (T)_6”° ’ b”k(o)_ 0
calized initial excitation, only the initial excitation site is
affected by the exciton-phonon interaction, while due to theand the second term also from equation (A12) by insertion
dipole interaction the amide-l excitation spreads over theof
neighboring sites also within thg(L)> state. For the time in o2 [
which the expansion is valid, however, the results obtained, (5 (0)=e - Bafsio)-o]
from the |D> simulation agree very well with it. Thus, to-
gether with the long-time results and our previous work onb (0) B ( i3 T —1)6
medium time scales, we conclude that thg> |&pproxima- nk ok|© no
tion must be very close to the exact solution for times from 0
up to 10 ns. A similar decomposition can be performed for the oscillator

As it was to be expected from the beginning, an expanpart:
sion of the exact solution around a single point in time, i.e.
t=0, cannot replace methods using ansatz states for simula- _ity
tion on longer time scales. One could think to compute sim- |J(T+t > eh |qu 1,T)>
ply higher orders of the expansion. The draw back of this t; t;
approach is, that for longer time rather high orders would be_ = J +
necessary, leading to prohibitively complicated expressions. ’ Z (a”( ) )a” ( ) (T)e D é|0
Also it is known, that attempts to expand wave functions
only around a single point in time usually lead into prob- (41)
lems, when they are applied for longer times. However, there
is another possibility to use the expansion method also up t@here both terms can be computed from equation (C9) of
larger times, namely to use a given expansion only for a smafiaper I. For coherent state operators, as occurring in the sec-
time interval, sayr, and use the state obtained as initial stateond part one only needs to note that the exponential operator
for a further expansion aroundttand so forth. If the time  for the oscillator system commutes with them. Thus for time
interval is small enough, €.g=0.05-0.10 ps, the expansion steps¢t with £>1 with arbitrary coefficients ¢¢t) one has
could even be restricted to the first order. However, in thigo treat cases like this as a superposition of exact solutions
case the first order becomes more complicated. for the decoupled oscillator system:

Assume time step&t with £=0,1,... and 0<tg then for
£=0 we have the same expansion as discussed above. How- _it 5
ever, at tx we have the new initial state e’ Z dn (¢1) Un (¢1) 3] 0) =

n

(39)

(40)

no

n

[wolt 1)) = 3 (a()-3noak O + & (1)Us(r) 2| 9 S G @ 00 42)
0

n d

(36)

Then our first order state in the second time interval is o
where all the terms can be calculated individually for each n

as an exact solution of the decoupled oscillator system with

O_it, _itj an initial excitation localized at site n, leading to
YLr+t)=p " +e D llJo 11)) _
D (37) It ~

e 1S ay()0n(r) 3 0) =

where the different terms can be derived from the exact spe- -

cial case solutions given in detail in paper I. For the small _
. . K 21 Jt i 0
polaron contribution we obtain 1 “pK(mmn) 2% ok (43)

(38) =} Z (er)dq()e e

ItA

n
_ | (T +t)> © |llJo lT» In this way for any time step the contributionsyil |et+t)>
LN ity can be calculated, using alwayg1,£t)> as initial state, and
0)+e n & (1) Y(r) thus the first order approximation can be propagated through
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larger times. However, the time stepas to be chosen small

enough, that the first order is a reliable representation of the,(, ) - T D
exact solution. According to the present warkhould be ( ) Z p"( )A"()
around 0.05-0.10 ps. Investigations along this line are in
progress, which, as we hope, will lead at least for a few

\Y)

picoseconds to a state which is nearly identical to the exact _i

solution. However, the expressions obtained become more (v |e kg |v>

complicated at each time step (see Appendix D), especiallp,, (T): ﬁ (47)
for the computation of expectation values. A simpler possi- _r

bility would be, to calculate at eachfrom |p(1,£1)> the set Z (nle ke |W)

{a (¢1),q,(£1),p,(£1)} and to construct a |B like state from m

them, which in turn could be used as initial state for the next
period. However, in this approximation one could miss the
quantum mechanical phase mixing between phonons an§inere k is Boltzmann's constant and s the phonon part
excitons, which is described by blike states. This possi- of the Hamiltonian. Then the final expansion is given by
bility has to be checked by numerical calculations.

The final step of these investigations will be the intro-

duction of temperature into such expansion methods and to it o

compare the results with the usually used methods for the o ) H

treatment of temperature effects, e.g. Davydov’s methodA(t T Z Z T O

which uses an averaged Hamiltonian or our lattice popula- v k=0 (48)
tion ansatz, where the lattice is populated with thermal

phonons prior to the start of the simulation. For this purpose Réq" (0)|H AH |L|" (0>

we would have to start with an initial state of the form [8]

We want to use such an expansion again up to the third order

V) in both k and | for the case of the small polaron limit and to
compare it then to the results of the different models for in-
clusion of temperature effects into the theory.

9.(0) =3 (05

n

~ \Y
(b;) ‘ (44) In the third and final paper of this series we will present,
|V> = |_| |0>p on the basis of the discussions in this work and paper I, ap-
koyVk! plications of the |> model to proteins with emphasis on the

guestion, whether or not Davydov solitons are stable in such
systems at OK and at physiological temperatures. Further we
will present vibrational spectra of proteins, calculated from
The dynamics as obtained with our model.

where v denotes any one of the possible phonon distribu-
tions in the lattice. Then in the usual way we can write dow
the exact time evolution as
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Appendix A: Expectation Values of the Exciton Number Operators and the Norm

The expectation values of the number operators for the excitons in the different orders m of the wave function are given by

N (4. 8) = (w(o, O] 2w )

(A1)

and the norm of the states can be obtained by direct calculatiop,9ES@(,t)[P(u,t)> or by summation of the i,t) over
all sites n, since the total number of excitons equals 1. The zeroth order results in

LLI(O)> :<oo+ J—Lp0| Nn|w+ J—Lp0>

(A2)
which is easily evaluated and yields (since there is no first order correcf{iby+MN (0) and @(0)>=p(1)> holds)
O * O
Nn(l): 2+ Reaag)) (ag - ])aJo - R%Eé]@no +
O
N-1 N-1
Sy Efeodwnd] *)
UO e k=1 ek 1

Summation over n yields the norm:

% N, (1) = 3- 2Rq§$> Dq, 2R{ 4,] (A4)

n=1

In second order we have to evaluate

€
—~~
)
Mg
|

2 . 2 2 . 4 .
_<¢(])_2th_2 blNfol)- wz> =N o) RFWIN B (2[R fu)
(A5)

Due to the phonon operators i+ we have

(IIRa|w2) = (W[ Now2) =0 (A6)
Further, since in &) only the exciton operator for site o occurs, whilaligr [only those for sites o+1 and o-1 are present

(ol =)o) = o

holds. Dgether with

<L|J2|Nn|tl-'2> = JZ’\12_1(7‘10%)2('6*31,kf5 no1t Aar d n@l)

(A8)
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we obtain

N 1
DJt
(2) N 1)+% zwkt (0—1,l<6n<}1+A261,l§mel)
k=1

which summed over n yields the horm

ot e

S(Z) z Ny 2) %j)*'ﬁg kz:]_ wkt) ( o1, k+Ao+1 k)

The third order is more complicated and needs evaluation of

Nn(3):<w(2)+i€%g wafifu() L w3>: No2)~ B IN fua) (ws fus)
<w(2){l<ln\w3>=<w+J—wo\Nn\w3>—2th—22<w2\ﬁln\w3>

Using the well known commutation relations of our operators we obtain

w‘N ‘wa 32( ) zhkak BokU no <llJo‘Nn‘llJ3>:0

(oinfua) =33 (P () s+ (&) 300

n=1

Collecting the terms yields

N-1

< ){ ‘UJ3> thka][Dk(a‘g)* 5cokucé no_h(’J lﬁé—)(%—l)*én,o—l*' é+)( d+1)*6n,o+1%

Together with the fact that

N-1
<w2\Nn\w 3> =3 z (h“’k)3 %%1,k':k(_)5n,o—1 + Agrpk F|£+)6n|o+1%
(=1

is real and

123

(A9)

(A10)

(A11)

(A12)

(A13)

(A14)

(Al5a)

(A15b)
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N-1
<L|-'3‘No¢1L|J3> =J° ? Fk(_)g *y (oo hwyc ) (i)g * C’(ki) df&%
k=1 B
A N-1 , (Al5c)
(WalNo[ws)=9*Y (1w DY)
=1
we finally obtain
_ H1 oo & )fH FLat'S, 2 () Js
Nn(3)— Nn(2)+6n0_2%6555 kﬂ%")ktDk gg"éno—l%Ekzl(wkt) Ex Im@aﬁrl) El+
LS el OF L S O, OF ,» O,
+ =1 %:_l(wkt) E\ % +k=1§wkt) Ry g k,kzzl(wktm) 1) %&kkg G/ Gy :
ot =, (H1 oot w H oot s Jdn
*3nof ] k:1(00kt) =B H wktD%(Jf—'m[aobqulUEmnoﬂ%;kﬂ(wkt) El(()lmaag,ﬂ) g
ST e g N A () e (A16)
+3_16§J{t§2 %Zl(‘*’kt)z'zk )g +k:1§°°kt)2 FIS )g"’k;:l(wktmk‘tf%kk)g+G$<R)G(k& +
4 N-1
+5no+2516§%t§ %" tDé)gg
(=

The norm S(3) is then simply given by summation d8Nover the sites n:
N

3)=> M (AL7)
n=1

The explicit expression for S(3) is obtained from (A16) by replacing on the right hand side the(8rmitN S(2) and by
leaving out the Kroneckey's.

Appendix B: Expectation Values of the Phonon Operators

In this Appendix we want to calculate the expectation values of the phonon annihilation operators. Note that their complex
conjugates are the expectation values of the phonon creation operator. These expectation values are

By (1) = <LIJ(H)( by

W) (B1)

The first expectation value in this serieg(=B,(1) is given by
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5. = (03w = (03] o 301 = (o 301l

%)
Qo

(ko) =[] (BofBip o = b
k=<1 0 (4]

<UJ O‘bk‘w> bokUo

* OJ
B (V)= bokgL+ a(é)@a% ‘ﬁlﬂ
O O 0O

For B (2) we have to evaluate

o= (uEJB ) =4 L o) L 02
=57 HOBw= )+ (0ol (v biws)
S —
T TRE R RTAE: F PURITS B
)i -00)
o
(velluz)= 5 st (Ao Ao+ Ao o o) b g) 0
o s th vl et reads
B(2)= B+ 35 ot fada) Avascr(ah) Avacp

For the third order wave function we have to compute

B (3)= (W(3]Bifu( 3)>:<w(2)+i§w3\6k\w @) +i—;—3w3>

= B¢ gw o ws) - (wafpw(@)Er 5 <w3\bk\w3>

125

(B2)

(B3)

(B4)

(BS)

(B6)

(B7)
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The two mixed terms can be reduced to

B 3-wo) =00 (wslbfw(d) 2>:<¢3\@\w>-%%<¢3‘5k‘¢2>
< ka‘“’3> <J+oo wo\h(\w3>—§t—2< ‘bk‘¢3> (B8)

Now we have to evaluate the individual expectation values:

N-1
[>: 3 8 byUy 16> 4 Dby
k'=1

(0o = 3 () 2802 2o b2 0J0) = b b
v=-2
(B9)

fwsivs)= 3 O (drianl Meuaﬂw Aane dg+{Frmeud

N-1 +)D
=J hwkmo—l Z ha)? +'°b+Lkz hoy) 5{ E
k=1

Collecting the terms, this yields

3 . N-1
o3 (v = B a3 g
k'
- % (B10)

Z wkt2E£)+Ab+lkz (w1 E‘E)%

o)
w
k H 0-1,k
The contributions to the next term are
2 *
(fadws)= 3 (9 (=) (qcs

v=-2 c>

= 3%hw aagrz)* D|(<_) +(33)* D« +(3g+2)* q(:)Er (hwk)za%—lj é_) +( %+1) 'éJr)ﬁ

<LIJ O‘Bk‘w 3> = <q6kfo‘ 0> = Pho Dy (B11)

(ol = () (s o) = #10(2] 0.

and therefore
<<D+J—L|Jo‘&<‘tl-'3> == hwk)zﬁa%—l * F(_) +( +1)* F|£+) @*‘

+thwk§ag—2 @ao Uo +( —1E|q(+ aé+2) |:£+)§ (B12)
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Further

<w2‘6k‘¢3>: _2 (-1)*( 0|[éiléo—1+éiléo+]]h<h+owﬁv| qz_gqéilAm:—l‘C>+< q:é:lAbf+1‘ (E

_thwkz hooK) %Acrlk%@ +G&k%+ Ae+1,k%ék' GS< %

and thus

N-
% ht Wyt Z wKt) %0«&1 k%Gkk +G(|<|2%+ A0+Lk%q(<k dk %

The final expectation value is

(W)= 5 0" (daon 3 By 5o

> < 45 by

V,u=-2 v—

where
(g =3 i v 06 i e |3

A A N N-
<0(r¢+1bkr¢10> 32 (hey)? z (heow)? Ek +J2hookz (o )? F( %q(« ékk%
<qf56kf0‘o>:a4zhwk,hwwDKDK.< by by, 0>: 0

kR

and thus

6 N-1 o
L lufios) = B oty (o D) + RO

k=1
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(B13)

(B14)

(B15)

(B16)

(B17)
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Then B(3) is given by

%‘gwktgag_z)* D&‘hﬁaf;)* Uo +( ) 1HD‘ +(ao+2) q£+)§_
N-1
_%%E wktz wkt Sr‘o—l I(%?ﬂgk +G|(< %"’ Ab+1k %C{k é< % (818)
k=1
. N-1 N-1
+|€D£§2§T'ag)bokuo (wkt)Dkbok+ EAH Z E£ + %ﬂ,kz Wi ) %
k=1 =
N-1
A S o R+ VB ol IR
k=1

The expectation values of the displacement and momentum operators can be computed simplfufrand B’ (1) as
decribed in the main text.

Appendix C: Expectation Values of the Hamiltonian

Since the Hamilton operator is hermitian, we can write for the expectation value for the first order wave function, omitting the
vanishing contributions of the total of 18:

H(0) = H(D) = (co+ 3~ wolv+ Jo+ 3-w o) = 2Re i I~ (wfédw o) +(] 33 - ( Ju o) (1)

where
<J‘j‘L|J 0> = —J@ag_l)* +(€€’+1)* ﬁ
(afs) = 23() S 100 B (C2)

k=1

<"°|‘:J|L|J 0> = (aéo)* Uo Zlhkaokb*ok
(6§9)=-o#) (d2+ d)u

and thus we obtain finally for H(1)

H{Y) = 2, Zhkaoquga%boﬁaJo)* ~tr 20REds 3] U RE &) (dar B (3

For the second order we need the following expectation valueg fofyith equation (29)]

<

N-1
k

)29 (0 (B + o)
Z k) |Ao-1k t Aoty k (C4)

k=1
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<UJ2MUJ 2> 0O <UJ 2‘H‘UJ 2> W oW 2>
and the total function H(2) is given by

2 A 4 A

H(2) = H(1)—;—2 Re%w(JXH‘w2>5+;—4<w2‘H‘w2>

Since of the six individual expectation values containeé.u(il)|ﬁ| llJ2> four are vanishing we arrive at
(wafeloz) = (oo + (dofvz)

(wlofw2)=(33w2) = (woldw )= (w dJw ) =0

where

<qj\w2> = 32(33»)* uoNz_lhwkb’;k( Aot k+ Agy k)
k=1

(Jows) = ‘Jtz_ll(h"’k)2 Ef‘trl,chrl k(a]al)* + Ak 3)+1k( %Jﬁ

Thus finally we obtain

1 N
@)= HE+ L z (0 (A3 1ict Ao )
i
2

~EH Yo Zhwk( oLkt Aotk Ré{bokao] {'%—1k Eb—lkR‘%é ]* Brak Brak R[e é+1]}

For the third order correction we have to evaluate
=00 5 )y =4O el 5 (v

(002)F0s) = (8025 (vl

Since

(alilos) = (0[0 0-1+6 r J+ ) 3 (9P 3]0

v=-2

is obviously real, and thukm[(tl.lz |H| LIJ3>] =0, it remains to calculate

H(3)=H(2)-——'m%w+~l wolAlws)r = %, 6<w3\ W)

129

(C5)

(C6)

(C7)

(C8)

(C9)

(C10)

(C11)
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where we obtain fo{>

N-1
Hlwo) = —J(ég_l+ agﬂ) 0)+ Z hw y Boy b 8yl 0)
k=1

<w°‘ﬁ‘q’3> = J%qf—1‘0>+<qf+1

O>%+ ’:Z_ihookBok< ¢ka4 ()z F ’;Z(hwk)zaﬁ(:) + By D+ é:)%

Note, that(yo |H| W 3) is real. The action of the Hamiltonian @o>|yields

) = ~226 (&1 + 2.1) B azzhquokbok+ B b} B]'8]8.)

(cfios) = () 9Hpolf o) +(p o o (ao)ZhwkEBokb {8 149 +(Bor Boffp bbid 95

The explicit evaluation of the expectation values results in

<0J(|:|‘LIJ3> = 32(330)* Uo’\lz_lhwk%\lz_lhwk' Bok Bok EC{;) + é:;;) + Bk Q E’f
+hwy %( ) §+ tbk@: % (B)k + tbk) Dk%

Finally, the action of the Hamiltonian on |J> leads to

N [ N-1 .
Al9) :ZEJ( 1)+aﬁkzlhwk Bk @Eﬂ‘»

n=1

and thus the expectation value of the Hamiltonian is given by

<‘]‘H‘w3 i aaoﬂu +( Bave1 %qr zhkamvk( v)*whfv %

DII

which yields

<J‘I:|‘LIJ3> :Zhwk 3@% 1) B-1k Fk(_) (32, ) '%+Lk ﬁ*

N-1

w325 (el fao) Bl (224 8) B +(3) men+(d+ o) E+(4s) 8ok P

k=1

(C12)

(C13)

(C14)

(C15)

(C16)

(C17)

(C18)
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and thus

1

H'(3) = ——Im%w 1)|H|LIJ3>D— 1DJtD2U0':zllwkt§zlhwk Im[ao okbok]%K G(kk + By Dﬂ
+hwkam[a‘g’]%l((_) + E|(<+) %ﬂm[ag’ h)k]%Fk(_ + I'TE+ %+%m[ @’] I%k+|m[ & Q,k]% q%—

-2 o ol o]V
3 3t (C19)
+§?z wit) ém[aO_Z]Bo 2ka +Im[a0 +9o]E¢(<

k=1
+Im[ g] 0ka+Im[ao+ ao+2]E£ +|m[ %+2] B2k [£+ :

Finally we have to calculate the three parts of the expectation value of the Hamiltonian with thig>sta first step we
evaluate the exciton-phonon interaction part:

N N
ankéﬁénNJs):z Bnk z 1) rv A@\A v|0 Z( ]) %o—v krv %—v“}
n=1 n=1 v=—

(C20)

s

The expectation values occurring in (C20) had been calculated already in Appendix B and thus we can write directly

S B0l (B - B afus) = 3 Bs0F (1 + D) =23 e 07,
v=-2 v=-2

n=1

N-1

N
Ws|Y S reorBr(bic+ Bk)aram -

n=1 k=

=

N-1
=237 z hwk 2(hwk) %‘wk%o—l ka + Bo+1k F( ) E¢(<+) %’
k k=1 (C21)

+hw)e %0_1’“:'((-_) %(kk) + Gk k%"’ 3)+lk %q{k é %

The phonon part yields
N-1 2

(W3] Y hoabi Byl ws) = zhwk 3 (dF B By
k=1

0
0)= (o P B (C22)
0)= (1) %hwk 2l @2+N Ewk% (i,)+c,{jk%§

(dF 557 B

(dF 2267 Bif s
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<qu5; akfo\o> = 3* (1w )? O
Finally we have to evaluate the expectation value of the opefator

2
Jusz)=-J Z (-D* ﬁu (5&“—1 + %‘3+p+1)| 0
n=-2

From this we obtain
A 2 + N R
<LI13‘J‘LIJ3> =-J z ()™M (oF I F, E(%w Forp-1+ Bory A%qm) 0=

V,u=-2
2 R R o 2 R
=33 dofyafu|o)+ (4 fu 9F= 2y Ref 6iar| 0=
v=-1 v=-1
N-1

=234 Z (h(,ok)3 %)lg_) FIS_) + Dy %k(_) + FI£+) %.,. D$<+) |:|((+) E

k=1

Then the complete expectation value, multiplied with the appropriate factor is given by

365 36 36
N-1
-2 S P DO oD + B0l e
k=1
|:‘ZN—l [F -~ 0
+3_16§%t5 k:1hwk(wkt)2§%tg E)ngDI%*@&) E+
- e N1 - - + +
+ont) k( )gJ'%:k( )%ZE* Z(wk‘t)Z%’ISK) +Gkkg+%6(kk) + kkﬁ%"
k=1
N-1
+1i8%§2 (JJkt) ((JJk't)z %’l(ﬂk %O—l,kl:k(_) Ek'_ + BO+lk Fk(+) E’(: E+

Then our final result is given by

HE)=H@+H(9+H"(3

H@) = (w(2)H|w(2) [equ. (C8)]
3 ~
H(@)=-5 5 mAv@)Alvs)g [equ. (C19)]

Hn(3):i;_<¢3‘|q‘¢3> [equ. (C25)]
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(C23)

(C24)

(C25)

(C26)
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Appendix D: Propagation of the First Order Wave Function to Larger Times
In this Appendix we want to show for some time stapthe explicit formulas for the dynamics as they result from the

calculation of the individual terms. The indgx1 we drop from the states in the following. We consider stepg€=0,1,...
and times t with G t < 1. As already mentioned in the main text we have for the first pefil,

% (D1)

W)= Y (a7 ()-3n0)an] 0)+ (9 Uo(92%

From this we obtain for &=

0

()= 3 (@26) 300 )R 0)+ 8 ()0u(0) %

n

(D2)

which is the initial state for the first order term in the second petiott,

D_ii(]) _Ej 0
|‘|J(T”)>:;=E horel ‘1§¢(T)> (D3)

Before explicitely writing down the states resulting from equation (D3), we want to define some quantities to keep the final
formulas shorter:

ﬂcoEQT[kD
n OHNH

2i
e

ok (t)

k=1...,N

N-1
iy Bﬁk[sir(wkt)—w kt]
e k=1

vn(t)=

Lk(t) = Bnk(e‘"*’kt —1) . k=1...,N-1 (D4a)

S N RSOty
60 @)=e zkjb"k() ekzl (5 VOICERNC
L5 ol
sg=e 2 )

This yields for the first term, together with the expressions for the small polaron limit from paper I:
it

e 1u)= 3 QG0+ P0Gl
A =[a0)-Bnolyn) 5 BUD=2uc() (Da0)

@)= a2 (Wol0D() : ()= ()™ +tue(}
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Further we act with the second operator on the initial state, observing that the exponential operator and coherent state ope
tors commute with each other. This yields:

) =3 B0+ 50405

2
ka( n-rl)

(0] 41 (1)~ 8wo) ©)

Collecting the terms and substracting the initial state leads to

w(e+0)= 3 B0 0000+ 00405 0+ HOE - 20 U
” D6

a ()= ald (1)~ &l (1) *5no (06)

This yields directly the initial state for the third period:

)=y @)+ @)l () ) 0u0H 9+ I U )- £() le) 9 ©7)

From this state we obtain

its O
e hJ|w(2T)>=ZEU )+ & (u0) WOy HOWEH ©08)
where the coefficients are given by
IR RPN
CHCRDLOR T
N 2M (-
Ho=5 3 B0 9
=1
N O 2—Tuk n-n @k n-o O
D=3 3o g h
=lOn O
w NALIWN
a$]6) (t): aON(T) Z e k( )¢k(t)

Further we can write

S = 3 5 AW o0

j=3 n
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with the different coherent state amplitudes

b= ¢ b4 (0= Q)™ +tm(d 4T (= Be(r) @800+ Lo )
o0y (1)= D () + oI the (3=] Bile) € +2ak (oo e

and coefficients

()= @va() + = L) 0= Sy

D12
ef>(t): A Dy o0 4;) :—és(rw o(av (0 o
Now we can write down the state vector for the third interval:
Y(2r+1)) zge (2)(t)+an (DU,() 416 9U(2) (1)- o{]) ;n])
(D13)

-2l ©06()+ Y 18 00 (T)gam— H ()~ @) o) o

n

From this expression we can compute now the initial state for the fourth period and so on. It is obvious that with each periol
the expressions for the state vectors become more complicated. However, the calculation of expectation values from the
states is rather simple, because they are all just superpositions of free exgitoan{D|D>-type states. The problem is that

their derivation becomes lengthy and tedious. Currently we try to find out whether or not it is possible to establish a kind of
recursive algorithm for this task.
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